University of Sheffield

School of Mathematics and Statistics

- MAS140: Mathematics (Chemical) MAS152: Civil Engineering Mathematics
- MAS152: Essential Mathematical Skills & Techniques
- MAS156: Mathematics (Electrical and Aerospace)
- MAS161: General Engineering Mathematics

Semester 1 2017-18

Outline Syllabus

- **Functions of a real variable.** The concept of a function; odd, even and periodic functions; continuity. Binomial theorem.
- **Elementary functions.** Circular functions and their inverses. Polynomials. Exponential, logarithmic and hyperbolic functions.
- Differentiation. Basic rules of differentiation: maxima, minima and curve sketching.
- Partial differentiation. First and second derivatives, geometrical interpretation.
- Series. Taylor and Maclaurin series, L'Hôpital's rule.
- **Complex numbers.** basic manipulation, Argand diagram, de Moivre's theorem, Euler's relation.
- Vectors. Vector algebra, dot and cross products, differentiation.

Module Materials

These notes supplement the video lectures. All course materials, including examples sheets (with worked solutions), are available on the course webpage,

http://engmaths.group.shef.ac.uk/mas140/

http://engmaths.group.shef.ac.uk/mas151/

http://engmaths.group.shef.ac.uk/mas152/

http://engmaths.group.shef.ac.uk/mas156/

http://engmaths.group.shef.ac.uk/mas161/

which can also be accessed through MOLE.

1 Differentiation

A function f is said to be **differentiable** at the point x_0 if f is defined at x_0 (so that $f(x_0)$ exists) and the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{(\star)}$$

exists (and so, in particular, is independent of the side from which x approaches x_0). The function f is said to be **differentiable in an interval** if it is differentiable at each point in that interval. At a point at which the limit (\star) does not exist, f is said to be **nondifferentiable**. The value of the limit (\star) is called the **derivative** or **differential coefficient** of f at x_0 and is denoted by $f'(x_0)$, $\frac{df(x_0)}{dx}$ or Df. Here D is called the **D-operator**. A slightly different form of the definition (\star) is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$
(†)

Remarks:

- 1. The derivative of a function of x is also a function of x and so may be differentiated with respect to x. This new function, denoted by f''(x), $\frac{d^2f}{dx^2}$ or D^2f , is called the **second derivative** of f. Higher order derivatives are defined similarly.
- 2. On a curve y = f(x), $f'(x_0)$ gives the slope of the tangent to the curve at the point $x = x_0$. Thus for a function to be differentiable at a point, its curve must have a definite tangent at that point.
- 3. If x = f(t) gives the displacement of a particle at time t, then f'(t) gives the velocity of the particle and f''(t) is the acceleration of the particle (at time t).

Example

Suppose that $f(x) = x^2$. Then $f(x_0) = x_0^2$ and $f(x_0 + h) = (x_0 + h)^2 = x_0^2 + 2x_0h + h^2$. Thus (†) becomes

$$f'(x_0) = \lim_{h \to 0} \frac{(x_0^2 + 2x_0h + h^2) - x_0^2}{h}$$
$$= \lim_{h \to 0} (2x_0 + h)$$
$$= 2x_0$$

Thus $f(x) = x^2 \Rightarrow f'(x) = 2x$.

1.1 Rules for Differentiation

Suppose that f(x) and g(x) are differentiable functions on some interval and that c is a constant. Then cf(x), f(x) + g(x), f(x) - g(x) are also differentiable and

$$(i) \ \frac{d}{dx} [cf(x)] = c \frac{df(x)}{dx}$$

$$(ii) \ \frac{d}{dx} [f(x) \pm g(x)] = \frac{df(x)}{dx} \pm \frac{dg(x)}{dx}$$
Product Rule
$$(iii) \ \frac{d}{dx} [f(x)g(x)] = f(x) \frac{dg(x)}{dx} + \frac{df(x)}{dx} g(x)$$

$$(iv) \ \frac{d}{dx} \left(\frac{1}{g(x)}\right) = -\frac{1}{[g(x)]^2} \frac{dg(x)}{dx}$$
Quotient Rule
$$(v) \ \frac{d}{dx} \left(\frac{f(x)}{g(x)}\right) = \frac{1}{[g(x)]^2} \left(g(x) \frac{df(x)}{dx} - f(x) \frac{dg(x)}{dx}\right)$$
Chain Rule
$$(vi) \ \text{Suppose that } g(x) \text{ is a differentiable function of } x \text{ and } x = h(t) \text{ is a differentiable function of } t.$$
Then $f(t) = g[h(t)]$ is a differentiable function of t and

$$\frac{df}{dt} = \frac{dg}{dx}\frac{dh}{dt}$$
 or $\frac{df}{dt} = \frac{dg}{dx}\frac{dx}{dt}$

Inverse Function (vii) If y = f(x) has an inverse $x = f^{-1}(y)$ then

$$\frac{dy}{dx} = 1 \left/ \frac{dx}{dy} \right|$$

Note that the l.h.s. is a function of x and the r.h.s. is a function of y. Obviously we require $g(x) \neq 0$ in order for (*iv*) and (*v*) to be valid.

1.2 Maxima and Minima

A function f has a **maximum** at the point $x = x_0$ if $f(x_0) > f(x)$ for all x **near** to x_0 . Likewise it has a **minimum** at the point $x = x_0$ if $f(x_0) < f(x)$ for all x **near** to x_0 .

At a

• maximum $x < x_0 \Rightarrow f'(x) > 0$ and $x > x_0 \Rightarrow f'(x) < 0$

• minimum $x > x_0 \Rightarrow f'(x) < 0$ and $x < x_0 \Rightarrow f'(x) > 0$.

If f''(x) > 0 on an interval then f'(x) is increasing and the function f, or the curve y = f(x), is said to **convex** on that interval. Likewise, if f''(x) < 0 then the curve is said to be **concave**.

Convex

Concave

When the curve is convex, the curve lies above its tangent and when concave, below its tangent.

A **point of inflexion** is a point at which a curve changes from being convex to concave (or concave to convex) as shown below.

At a point of inflexion there is a change of sign in f''(x).

If x_0 is such that $f'(x_0) = 0$ and $f''(x_0) \neq 0$ then the function f(x) has a

- maximum at $x = x_0$ if $f''(x_0) < 0$
- minimum at $x = x_0$ if $f''(x_0) > 0$.

There is a point of inflexion at x_0 if $f''(x_0) = 0$ and $f'''(x_0) \neq 0$.

Note: A maximum or minimum refers to **local** behaviour and not to the **greatest or least value** in an interval. A function may have many (local) maxima or minima on an interval but only one greatest value.

1.3 Continuity and Differentiability

1. A function f which is continuous at $x = x_0$ need not be differentiable at that point. This is shown by the modulus function:

$$f(x) = |x| = \begin{cases} x & (x \ge 0) \\ \\ -x & (x < 0) \end{cases}$$

whose graph is

Clearly, f is continuous everywhere. Also the derivative $f^\prime(x)$ exists everywhere except at x=0. Indeed,

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1$$
$$\lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^-} \frac{-h}{h} = -1$$

2. If f(x) is differentiable at $x = x_0$ then f is continuous at x_0 . This is because

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ and } \lim_{x \to x_0} (x - x_0) \text{ both exist}$$

$$\Rightarrow \quad \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{(x - x_0)} (x - x_0) \right) \text{ exists}$$

$$\Rightarrow \quad \lim_{x \to x_0} f(x) = f(x_0).$$

1.4 List of Useful Derivatives

NOTE: It is assumed that \boldsymbol{x} only takes those values for which the functions are defined.

1.
$$\frac{d}{dx}(constant) = 0$$

2.
$$\frac{d}{dx}x^{n} = nx^{n-1}$$

3.
$$\frac{d}{dx}\sin x = \cos x$$

4.
$$\frac{d}{dx}\cos x = -\sin x$$

5.
$$\frac{d}{dx}\tan x = \sec^{2} x$$

6.
$$\frac{d}{dx}\cot x = -\csc^{2} x$$

7.
$$\frac{d}{dx}\sec x = \sec x \tan x$$

8.
$$\frac{d}{dx}\csc x = -\csc x \cot x$$

9.
$$\frac{d}{dx}e^{x} = e^{x}$$

10.
$$\frac{d}{dx}a^{x} = a^{x}\ln a$$

11.
$$\frac{d}{dx}\ln x = \frac{1}{x}$$

12.
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^{2}}}$$

13.
$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^{2}}}$$

14.
$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^{2}}$$

15.
$$\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^{2}}$$

16.
$$\frac{d}{dx} \sec^{-1} x = \pm \frac{1}{x\sqrt{x^2 - 1}} \begin{cases} + \text{ if } x > 1 \\ - \text{ if } x < -1 \end{cases}$$
17.
$$\frac{d}{dx} \operatorname{cosec}^{-1} x = \pm \frac{1}{x\sqrt{x^2 - 1}} \begin{cases} - \text{ if } x > 1 \\ + \text{ if } x < -1 \end{cases}$$
18.
$$\frac{d}{dx} \sinh x = \cosh x$$
19.
$$\frac{d}{dx} \cosh x = \sinh x$$
20.
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$
21.
$$\frac{d}{dx} \coth x = -\operatorname{cosech}^2 x$$
22.
$$\frac{d}{dx} \operatorname{sech} x = -\operatorname{sech} x \tanh x$$
23.
$$\frac{d}{dx} \operatorname{cosech} x = -\operatorname{sech} x \tanh x$$
24.
$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1 + x^2}}$$
25.
$$\frac{d}{dx} \cosh^{-1} x = \frac{1}{1 - x^2}$$
26.
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2}$$
27.
$$\frac{d}{dx} \operatorname{coth}^{-1} x = \frac{1}{x\sqrt{1 - x^2}}$$
29.
$$\frac{d}{dx} \operatorname{cosech}^{-1} x = \frac{-1}{x\sqrt{1 + x^2}}$$