
FURTHER INTEGRATION

5 minute review. Remind students that hyperbolic substitutions can solve integrals
which trigonometric substitutions can’t, such as

∫
dx√
1+x2

(x = sinhu),
∫

dx√
x2−1 (x =

coshu) and
∫

dx
1−x2 (x = tanhu). Also remind students that there is a trick to integrating

rational functions of sinx and cosx using the substitution t = tan(x2 ), which gives
expressions for sinx and cosx in terms of t; see Q2.

Class warm-up. Find
∫ √

1 + x2 dx. If more examples are desired, choose something
from the below.

Problems. (Choose from the below)

1. Find the following indefinite integrals:.

(a)

∫ √
x2 − 9 dx

(b)

∫ √
25− x2 dx

(c)

∫ √
x2 + 4x− 5 dx

(d)

∫ (
1− x2

)3/2
dx

(e)

∫
sinx

sinx+ cosx
dx

(f)

∫
sinhx

sinhx+ coshx
dx

2. The t = tan(x/2) substitution. Consider I =
∫

dx
sin x+cos x .

(a) Use a double-angle formula to show that sin(x + π/4) = 1√
2

(sinx+ cosx).

Hence use the substitution y = x+ π/4 to write I = 1√
2

∫
dy

sin y .

(b) Let t = tan(y/2). Show that (i) dy
dt = 2

1+t2 and (ii) sin y = 2t
1+t2 .

(c) Show that I = 1√
2

ln
∣∣tan

(
x
2 + π

8

)∣∣+ c.

3. Integrals of
√
a2 − x2. Let I =

∫ √
a2 − x2 dx in the region |x| < |a|.

(a) By making the substitution x = a sinu, show that

I =
1

2
x
√
a2 − x2 +

1

2
a2 sin−1

(x
a

)
+ c.

(b) Here’s another approach. Starting with I =
∫ √

a2 − x2 dx and treating

it as a function of both x and a, one can show that ∂I
∂a = a sin−1(x/a)

(how?). Now, integrate with respect to a, treating x as a constant and using
integration by parts with u = sin−1(x/a) and dv

da = a.

4. Consistency of integrals. Some integrals can be expressed in more than one
way, and the results can look superficially rather different. For example,

∫
dx

1−x2

can be written as both 1
2 ln

(
1+x
1−x

)
+ c and tanh−1(x) + c.

(a) By starting with tanh(y) = ey−e−y

ey+e−y = x, show that tanh−1 x = y = 1
2 ln

(
1+x
1−x

)
.

(b) Show that the following expressions are consistent, and find the relationships
between c1 and c2.

(i)
∫

dx√
1−x2

= sin−1 x+ c1 = − cos−1 x+ c2 (where −1 < x < 1).

(ii)
∫

dx√
x2−1 = cosh−1 x+ c1 = ln

(
x+
√
x2 − 1

)
+ c2 (where x ≥ 1).



FURTHER INTEGRATION

For the warm-up,
∫ √

1 + x2 dx = 1
2x
√

1 + x2 + 1
2 sinh−1 x using the substitution x =

sinhu and the identity cosh2 u = 1
2 (1 + cosh(2u)).

Selected answers and hints.

1. (a) 1
2x
√
x2 − 9− 9

2 cosh−1(x/3) (b) 1
2x
√

25− x2 + 25
2 sin−1(x/5)

(c) 1
2 (x+ 2)

√
x2 + 4x− 5− 9

2 cosh−1
(
1
3 (x+ 2)

)
(d) 1

4x
√

1− x2
(
5
2 − x

2
)

+ 3
8 sin−1 x (e) x

2 −
1
2 ln |sin(x) + cos(x)| (f) 1

2x+ 1
4e
−2x

2. (b)(i) dt
dy = 1

2 sec2(y/2) = 1
2

(
1 + tan2(y/2)

)
= 1

2

(
1 + t2

)
so dy

dt = 2
1+t2 .

(b)(ii) sin(y) = 2 sin(y/2) cos(y/2) = 2 tan(y/2)/ sec2(y/2) = 2t/(1 + t2).

3. Here’s one justification of the given expression for ∂I
∂a . Given that I =

∫ √
a2 − x2 dx,

by definition that means that the derivative of I with respect to x is
√
a2 − x2.

In other words, if we treat I as a function of both x and a, then ∂I
∂x =

√
a2 − x2.

Now, differentiate partially with respect to a to get ∂2I
∂a∂x = a√

a2−x2
. Since ∂2I

∂a∂x

will also be the result of differentiating ∂I
∂a with respect to x keeping a constant,

it follows that ∂I
∂a =

∫
a√

a2−x2
dx = a sin−1(x/a), as claimed.

Equivalently, one can just differentiate the integrand with respect to a, although
without the justification above I’m not sure whether you’d have known that was
allowed!

4. (a) (e2y − 1) = x(e2y + 1) ⇒ (1− x)e2y = 1 + x ⇒ e2y = 1+x
1−x ⇒ y = 1

2 ln
(

1+x
1−x

)
.

(b) c2 = c1 + π/2 (try alternative substitution x = cosu).
(c) c1 = c2. To show equivalence, let x = cosh(y) ⇒ e2y − 2xey + 1 = 0 ⇒
ey = x±

√
x2 − 1 ⇒ y = cosh−1 x = ln(x±

√
x2 − 1) (and think about domain

of cosh−1 x).

For more details, start a thread on the discussion board.


