
PARTIAL FRACTIONS & INTEGRATION BY PARTS

5 minute review. Recap how partial fractions can be used in integration, perhaps with
the example

∫
1

1−x2 dx. Recall the product rule for differentiation, d
dx (uv) = u′v + uv′,

and integrate and rearrange to obtain the integration by parts formula∫
uv′dx = uv −

∫
u′v dx.

Class warm-up. Find

(a)
∫

4
(x−1)(x+1)2 dx (using partial fractions);

(b)
∫
x lnx dx (using integration by parts).

Problems. (Choose from the below)

1. Partial fractions. Find the following indefinite integrals using the method of
partial fractions as appropriate.

(a)

∫
(x + 1)

x(x + 3)
dx

(b)

∫
dx

x2 + 3x− 10

(c)

∫
dx

(x2 + 1)(x + 1)

(d)

∫
y dy

y3 − y2 + y − 1

(e)

∫
dz

(z − 2)2(z + 1)

(f)

∫
3x + 3

(x− 1)3(2x + 1)
dx

2. Integration by parts. Evaluate the following using integration by parts.

(a)

∫
tet dt

(b)

∫
x2 coshx dx

(c)

∫
lnx dx

(d)

∫
xn lnx dx (n 6= −1)

(e)

∫
y3e−y

2

dy

(f)

∫
ln(t2 + a2) dt

(g)

∫
cosh−1 u du

(h)

∫
tan−1 u du

3. Recurrence formulae?.

(a) Let In =
∫
xneaxdx where n ≥ 0 is an integer and a is a (possibly complex)

constant. Using integration by parts, show that, for n > 0,

In =
1

a
(xneax − nIn−1)

and I0 = 1
ae

ax + c. Find I1, I2 and I3. Show that

In
n!

=
1

a

(
xn

n!
eax − In−1

(n− 1)!

)
,

and find a general expression for In.

(b) Let Cn =
∫
xn cosx dx and Sn =

∫
xn sinx dx. Show that, for n > 0,

Cn = xn sinx− nSn−1,

Sn = −xn cosx + nCn−1.

and C0 = sinx + c, S0 = − cosx + c. Following a similar approach to above,
can you find a general expression for Cn and Sn?

(c) When a = i, what’s the relationship between In, Sn and Cn?



PARTIAL FRACTIONS & INTEGRATION BY PARTS

For the warm-up, (a) 4
(x−1)(x+1)2 = 1

x−1 −
1

x+1 −
2

(x+1)2 , so
∫

4 dx
(x−1)(x+1)2 = ln

∣∣∣x−1x+1

∣∣∣ +
2

x+1 + c; (b)
∫
x lnx dx = 1

4x
2 (2 lnx− 1).

Selected answers and hints. (All answers should include a constant of integration.)

1. (a) 1
3 ln

∣∣x(x + 3)2
∣∣, (b) 1

7 ln
∣∣∣x−2x+5

∣∣∣, (c) 1
2 ln |x+1|− 1

4 ln |1+x2|+ 1
2 tan−1(x) (d)

1
2 ln |y− 1| − 1

4 ln |1 + y2|+ 1
2 tan−1(y), (e) 1

9 ln
∣∣∣ z+1
z−2

∣∣∣− 1
3(z−2) , (f) 2

9 ln
∣∣∣ x−1
2x+1

∣∣∣+
1

3(x−1) −
1

(x−1)2 .

2. (a) (t−1)et, (b) (x2+2) sinhx−2x coshx, (c) x(lnx−1) using u = lnx, v′ = 1,

(d) xn+1

(n+1)2 ((n + 1) lnx− 1) , (e) − 1
2

(
y2 + 1

)
exp(−y2), (f) t ln(t2 + a2)− 2t +

2a tan−1(t/a), (g) u cosh−1 u−
√
u2 − 1, (h) u tan−1 u− 1

2 ln |1 + u2|.

3. (a) A general formula for In is

In = n!
eax

an+1

(
(ax)n

n!
− (ax)n−1

(n− 1)!
+

(ax)n−2

(n− 2)!
− . . . + (−1)n−1ax + (−1)n

)
+ c

= n!
eax

an+1

n∑
k=0

(−1)k(ax)n−k

(n− k)!
+ c.

(b) The general formulas are

Cn = n!

(
xn

n!
− xn−2

(n− 2)!
+

xn−4

(n− 4)!
− . . .

)
sinx

+n!

(
xn−1

(n− 1)!
− xn−3

(n− 3)!
+

xn−5

(n− 5)!
− . . .

)
cosx + c

and

Sn = n!

(
xn−1

(n− 1)!
− xn−3

(n− 3)!
+

xn−5

(n− 5)!
− . . .

)
sinx

−n!

(
xn

n!
− xn−2

(n− 2)!
+

xn−4

(n− 4)!
− . . .

)
cosx + c

where the series in each bracket terminates before the power of x involved
becomes negative.

(c) Using Euler’s relation, eix = cosx + i sinx, we find that In = Cn + iSn.

For more details, start a thread on the discussion board.


