EULER’S RELATION

5 minute review. Review Euler’s relation, $e^{i\theta} = \cos \theta + i \sin \theta$, commenting briefly on how it follows from the Maclaurin series of exp, sin and cos. Discuss how this means that any complex number can be written in exponential form, $re^{i\theta}$. Also cover the exponential identities for sin and cos, namely

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \quad \text{and} \quad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}.$$

Class warm-up. With the aid of a diagram, find the conjugate of $re^{i\theta}$. What shape in the complex plane does $e^{(1+i)\theta}$ trace out as θ varies? What about $e^{(1+i)\theta}$?

Problems. Choose from the below.

1. Relating functions. What are $\sin(i\theta)$ and $\cos(i\theta)$? What about $\tan(i\theta)$? And $\tanh(i\theta)$?

2. Trigonometric identities. Recall that we can use the exponential form of cos together with the binomial theorem to show that $\cos^3(\theta) = \frac{1}{4} \cos(3\theta) + \frac{3}{4} \cos(\theta)$. Use the same method to fill in the question marks in the identity

$$\cos^5(\theta) = ? \cos(5\theta) + ? \cos(3\theta) + ? \cos(\theta)$$

and find a general formula for $\cos^n(\theta)$ for any odd positive integer n.

3. Exponential form and negative numbers.
 (a) Let $z = 3e^{3\pi i}$. Plot z on the argand diagram.
 (b) What is $e^{i\pi}$?
 (c) Now let $z = -3e^{3\pi i}$. Plot z on the argand diagram. What is $|z|$? What is arg(z)? Write z in polar and exponential form.

4. More trigonometric identities. Prove the addition formulae for $\sin(A+B)$ and $\cos(A+B)$ by using the exponential forms of sin and cos.

5. More on exponential form. Let $z = e^{3\ln \theta + (\theta - \pi)i}$ for $-\pi < \theta < \pi$.
 (a) What is $|z|$? What is arg(z)? (Hint: you will get different answers depending on the sign of θ.)
 (b) Draw the shape in the complex plane that z traces out as θ varies.
For the warm-up, \(e^{(1+i)\theta} = e^{\theta+i\theta} = e^\theta e^{i\theta} \). This traces out a spiral. Conjugating a number reflects it in the real axis, so \(e^{(1+i)\overline{\theta}} = e^{\overline{\theta}} e^{i\theta} = e^\theta e^{-i\theta} \) will be the reflection of the spiral in the real axis.

Selected answers and hints.

1. From the exponential forms, \(\sin(i\theta) = i\sinh \theta \) and \(\cos(i\theta) = \cosh \theta \). Hence \(\tan(i\theta) = \sin(i\theta)/\cos(i\theta) = i\tanh \theta \), and so
 \[
 \tanh(i\theta) = \frac{1}{i} \tan(i^2 \theta) = \frac{i}{i^2} \tan(-\theta) = -i \tan(-\theta) = i \tan(\theta).
 \]

2. \(\cos^5(\theta) = \frac{1}{16} \cos(5\theta) + \frac{5}{16} \cos(3\theta) + \frac{5}{8} \cos(\theta). \) Using the same method, it follows that
 \[
 \cos^n(\theta) = \frac{1}{2^{n-1}} \left(\cos(n\theta) + \left(\frac{n}{1}\right) \cos((n-2)\theta) + \left(\frac{n}{2}\right) \cos((n-4)\theta) + \cdots + \left(\frac{n}{n-1}\right) \cos(\theta) \right).
 \]

3. (a) \(z = 3e^{3\pi i} \) has modulus 3 and argument \(\frac{3\pi}{4} \).
 (b) \(z = -3e^{3\pi i} \) sits diametrically opposite \(3e^{3\pi i} \) in the argand plane. Thus it has modulus 3 and argument \(-\frac{\pi}{4} \). That is, \(z = 3(\cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4})) = 3e^{-\frac{\pi}{4}i} \).
 (c) Since \(e^{i\pi} = -1 \), it follows that
 \[
 z = -3e^{\frac{3\pi}{4}i} = e^{i\pi} 3e^{\frac{3\pi}{4}i} = 3e^{\frac{\pi}{4} + \pi i} = 3e^{\frac{7\pi}{4}i} = 3e^{-\frac{\pi}{4}i}.
 \]

5. (a) \(z = e^{3\ln \theta + (\theta - \pi)i} = e^{3\ln \theta} e^{(\theta - \pi)i} = \theta^3 e^{(\theta - \pi)i}. \)
 - When \(\theta = 0 \), \(z = 0 \) (which has modulus 0 and undefined argument).
 - When \(0 < \theta < \pi \), \(|z| = \theta^3 \) and \(\arg(z) = \theta - \pi. \)
 - When \(-\pi < \theta < 0 \), \(|z| = -\theta^3 \) (since \(\theta \) is negative) and \(z = -(-\theta^3)e^{(\theta - \pi)i} = e^{i\pi}(-\theta^3)e^{(\theta - \pi)i} = (-\theta^3)e^{\theta i}, \) so \(\arg(z) = \theta. \)

Summarising, the exponential form for \(z \) is
 \[
 z = \begin{cases}
 (-\theta^3)e^{i\theta} & \text{for } -\pi < \theta < 0 \\
 0 & \text{for } \theta = 0 \\
 \theta^3 e^{(\theta - \pi)i} & \text{for } 0 < \theta < \pi
 \end{cases}
 \]

(b) The diagram is as below.

For more details, start a thread on the discussion board.