PARTIAL DIFFERENTIATION

5 minute review. Remind students that z = f(x, y) represents a surface, how to calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, and how the partial derivatives relate to gradients on slices through surfaces. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when $f(x, y) = x^3y^2 - 5e^{xy}$, with help from the students.

Class warm-up. Let $f(x,y) = (x^2 - 1)^2 + \ln(xy) - \frac{1}{2}y^2$. Find the points where $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$. (You could briefly mention the notion of a stationary point: this will be covered in the next video.)

Problems. Choose from the below.

- 1. Partial differentiation practice. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where
 - (a) $f(x, y) = x + y + (x + y)^2 + e^{xy^2};$ (b) $f(x, y) = \cos x \tan y - \ln \sqrt{x^2 + y^2};$ (c) $f(x, y) = \frac{y}{x} + 2^{xy} - \cosh(x^{-2});$ (d) $f(x, y) = \frac{x^3 - 3xy + 1}{e^{x+y}}.$
- 2. Chain Rule. There is a *chain rule* for partial differentiation, which states that if z = f(x, y), where x and y are functions of u and v, then

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u},$$

(and similarly for $\frac{\partial z}{\partial v}$, by replacing all u's with v's).

- (a) Let $z = x^4 + 2x^2y^2 + y^4$, where $x = r \cos \theta$ and $y = r \sin \theta$. Use the chain rule to show that $\frac{\partial z}{\partial r} = 4r^3$ and $\frac{\partial z}{\partial \theta} = 0$.
- (b) Check your answers above by expressing z in terms of r and θ and calculating the same derivatives explicitly.
- 3. More chain rule.
 - (a) Let $z = \sin(x+y) \frac{1}{\sqrt{x^2-y^2}}$, where x = u + v and y = u v. Using the chain rule, show that

$$\frac{\partial z}{\partial u}\frac{\partial z}{\partial v} = \left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2.$$
(1)

(b) Now let z = f(x, y) be any function of x and y, where x = u + v and y = u - v. Show that equation (1) again holds.

4. Contours.

- (a) What does the surface $z = \sqrt{x^2 + y^2}$ look like? (Hint: think about the *contours*; that is, the points where z = 0, z = 1, z = 2 etc.)
- (b) What about $z = x^2 + y^2$?
- (c) What about $z = \sin(\sqrt{x^2 + y^2})$?

For the review, $\frac{\partial f}{\partial x} = 3x^2y^2 - 5ye^{xy}$ and $\frac{\partial f}{\partial y} = 2x^3y - 5xe^{xy}$. For the warm-up, $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ at $(\frac{1}{\sqrt{2}}, 1)$, $(\frac{1}{\sqrt{2}}, -1)$, $(-\frac{1}{\sqrt{2}}, 1)$ and $(-\frac{1}{\sqrt{2}}, -1)$, although only the first and fourth points lie in the domain of f.

Selected answers and hints.

1. (a)
$$\frac{\partial f}{\partial x} = 1 + 2x + 2y + y^2 e^{xy^2}$$
 and $\frac{\partial f}{\partial y} = 1 + 2x + 2y + 2xy e^{xy^2}$.
(b) $\frac{\partial f}{\partial x} = -\sin(x)\tan(y) - \frac{x}{x^2 + y^2}$ and $\frac{\partial f}{\partial y} = \cos(x)\sec^2(y) - \frac{y}{x^2 + y^2}$.
(c) $\frac{\partial f}{\partial x} = y2^{xy}\ln 2 - \frac{y}{x^2} + \frac{2}{x^3}\sinh(x^{-2})$ and $\frac{\partial f}{\partial y} = \frac{1}{x} + x2^{xy}\ln 2$.
(d) $\frac{\partial f}{\partial x} = \frac{-x^3 + 3x^2 + 3xy - 3y - 1}{e^{x + y}}$ and $\frac{\partial f}{\partial y} = \frac{-x^3 + 3xy - 3x - 1}{e^{x + y}}$.

2. (b) Here, it turns out that $z = r^4$, from which the derivatives are clear.

3. (a) Here,

$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \frac{1 + 2(x+y)\cos(x+y)\sqrt{x^2 - y^2}}{(x^2 - y^2)^2}$$
$$\frac{\partial z}{\partial u}\frac{\partial z}{\partial v} = \frac{1 + 8u\sqrt{uv}\cos(2u)}{16u^2v^2}.$$

and

4. (a) The contours here are equally-spaced concentric circles. The surface is a cone, with tip at
$$(0,0)$$
.

- (b) This time we get a *paraboloid*.
- (c) This is best described as ripples in a pond. Use Wolfram Alpha to investigate.

For more details, start a thread on the discussion board.