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Matrices



Later in this course (Semester 2) we will spend a good amount
of time studying matrices.

However, they are so fundamental
to engineering mathematics that they may have already
appeared elsewhere in your course or could come up before we
get to them. To help you to get comfortable in their use, we
will cover some of the basics today.
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Why matrices?



Matrices as transformations
Let 0 ≤ a < 2π and consider the transformation of the plane
given by anticlockwise rotation through the angle a, as shown
below.
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Using geometry, we find that the point (1, 0) transforms to

(cos a, sin a) and (0, 1) transforms to (− sin a, cos a).
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It turns out that a general point (x, y) transforms to

(x cos a− y sin a, x sin a+ y cos a), and this transformation is
best described using a matrix.
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Matrices to solve equations

Many engineering problems involve finding the solution of
systems of equations.

Consider the system of equations

x − 2y + z = 0
2y − 8z = 8

−4x + 5y + 9z = −9.

We want to find values of x, y and z that satisfy all three of
these equations.

By adding and subtracting multiples of the equations from
each other, we find that the solution is x = 29, y = 16 and
z = 3. We will later see that there is a systematic approach to
solving such systems, again using matrices.
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Matrices to model systems

A certain city consists of an urban area and suburbs.

Each
year 5% of those living in the urban area move to the suburbs
and 3% of those living in the suburbs move to the urban area.
If there are initially 600, 000 people in the urban area and
400, 000 in the suburbs, how many are in each 25 years later?

Once again, problems like these are best solved using matrices.
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Definitions



Let m and n be positive integers.

Then an m× n matrix A is
an array of real numbers, with m rows and n columns; that is

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


We sometimes write A = (aij) for the above matrix.
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Identity matrices

Let n be a positive integer.

Then the n× n matrix In given by

In =


1 0 . . . 0
0 1 . . . 0
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. . .
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0 0 . . . 1


is called the identity matrix of size n.
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For example,

I2 =

(
1 0
0 1

)
and I3 =

 1 0 0
0 1 0
0 0 1

 .

The identity matrix In is always square. That is, it has the
same number of rows and columns.
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Matrix addition

Let A = (aij) and B = (bij) both be m× n matrices.

Then
we define the sum of A and B by

A+B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn

 .

In other words, to add two matrices of the same dimensions
simply add their entries componentwise.
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Warning!

It is not possible to add two matrices if their dimensions are
different, so take care!



Scalar multiplication

Let A = (aij) be an m× n matrix and let k be a real number.

(We refer to k here as a scalar.) Then we define

kA =


ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n

...
...

. . .
...

kam1 kam2 . . . kamn

 .

In other words, to multiply a matrix by a scalar, k, simply
multiply each entry of the matrix by k.
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Matrix multiplication



A big reason why matrices are so useful comes down to the
rule for how they multiply.

This rule is not as straightforward
as the rules for addition and scalar multiplication, but is not
too hard.

Matrices can only be multiplied when the dimensions match
up in the right way. The thing to remember is that the
number of columns of the first matrix must be the same as the
number of rows of the second one.

That is, if A is p× q and B is q × r, then we can find their
product. The result, AB, is a p× r matrix.
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That is, if A is p× q and B is q × r, then we can find their
product.

The result, AB, is a p× r matrix.
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We illustrate the procedure with an example.

Let

A =

(
1 2 3
0 1 1

)
and B =

 2 0
3 4
2 0


To find AB, we take each row from A (starting from the top)
and ‘multiply it’ by each column from B (starting from the
left) in the following way:

AB =

(
1.2 + 2.3 + 3.2 1.0 + 2.4 + 3.0
0.2 + 1.3 + 1.2 0.0 + 1.4 + 1.0

)
=

(
14 8
5 4

)
.
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In the previous example, A is 2× 3 and B is 3× 2
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result is 2× 2. Of course, BA will not be the same matrix, as
the result will be 3× 3.
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Column vectors

One case that occurs frequently is when the second matrix is a
column vector (i.e. an n× 1 matrix) of a suitable length.

For
example,

(
1 3 1
2 0 −1

) 3
2
2

 =

(
1.3 + 3.2 + 1.2

2.3 + 0.2 + (−1).2

)
=

(
11
4

)
.

The result will always be a column vector, although not in
general with the same length.



Column vectors

One case that occurs frequently is when the second matrix is a
column vector (i.e. an n× 1 matrix) of a suitable length. For
example,

(
1 3 1
2 0 −1

) 3
2
2

 =

(
1.3 + 3.2 + 1.2

2.3 + 0.2 + (−1).2

)
=

(
11
4

)
.

The result will always be a column vector, although not in
general with the same length.



Column vectors

One case that occurs frequently is when the second matrix is a
column vector (i.e. an n× 1 matrix) of a suitable length. For
example,

(
1 3 1
2 0 −1

) 3
2
2

 =

(
1.3 + 3.2 + 1.2

2.3 + 0.2 + (−1).2

)
=

(
11
4

)
.

The result will always be a column vector, although not in
general with the same length.



Column vectors

One case that occurs frequently is when the second matrix is a
column vector (i.e. an n× 1 matrix) of a suitable length. For
example,

(
1 3 1
2 0 −1

) 3
2
2

 =

(
1.3 + 3.2 + 1.2

2.3 + 0.2 + (−1).2

)
=

(
11
4

)
.

The result will always be a column vector, although not in
general with the same length.



Column vectors

One case that occurs frequently is when the second matrix is a
column vector (i.e. an n× 1 matrix) of a suitable length. For
example,

(
1 3 1
2 0 −1

) 3
2
2

 =

(
1.3 + 3.2 + 1.2

2.3 + 0.2 + (−1).2

)
=

(
11
4

)
.

The result will always be a column vector, although not in
general with the same length.



Column vectors

One case that occurs frequently is when the second matrix is a
column vector (i.e. an n× 1 matrix) of a suitable length. For
example,

(
1 3 1
2 0 −1

) 3
2
2

 =

(
1.3 + 3.2 + 1.2

2.3 + 0.2 + (−1).2

)
=

(
11
4

)
.

The result will always be a column vector,

although not in
general with the same length.



Column vectors

One case that occurs frequently is when the second matrix is a
column vector (i.e. an n× 1 matrix) of a suitable length. For
example,

(
1 3 1
2 0 −1

) 3
2
2

 =

(
1.3 + 3.2 + 1.2

2.3 + 0.2 + (−1).2

)
=

(
11
4

)
.

The result will always be a column vector, although not in
general with the same length.



Another thing to notice is that multiplication by the identity
matrix

(of the correct size) will leave the other matrix
unchanged. For example,(

1 0
0 1

)(
1 3 1
2 0 −1

)
=

(
1.1 + 0.2 1.3 + 0.0 1.1 + 0.(−1)
0.1 + 1.2 0.3 + 1.0 0.1 + 1.(−1)

)
=

(
1 3 1
2 0 −1

)
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Activity. Working in groups of two or three, in each case find
a matrix A such that

(i) A

(
x
y

)
=

(
x cos a− y sin a
x sin a+ y cos a

)
.

(ii) A

 x
y
z

 =

 x− 2y + z
2y − 8z

−4x+ 5y + 9z

 .

(iii) A

(
xurban
xsuburban

)
=

(
0.95xurban + 0.03xsuburban
0.05xurban + 0.97xsuburban

)
.



(i) A =

(
cos a − sin a
sin a cos a

)
.

This matrix corresponds to rotation of the plane through
an angle a: given a point (x, y), calculating

A

(
x
y

)
gives the coordinates of where it ends up after the
rotation.
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(ii) A =

 1 −2 1
0 2 −8
−4 5 9

 .

Notice that the equations in the example at the start of
the lecture correspond to the matrix equation

A

 x
y
z

 =

 0
8
−9

 .

The solution is then x
y
z

 = A−1

 0
8
−9

 .
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(iii) A =

(
0.95 0.03
0.05 0.97

)
.

In the example at the beginning of the lecture,

A

(
600, 000
400, 000

)
will give the amount of people in the urban and suburban
areas after one year. Multiplying by A repeatedly means
the populations after 25 years will be given by

A25

(
600, 000
400, 000

)
.
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And finally. . .



Reminders:

• email address mas-engineering@sheffield.ac.uk

• website http://engmaths.group.shef.ac.uk/mas152

(also accessible through MOLE).

mas-engineering@sheffield.ac.uk
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